s - -/
OBJECT-ORIENTED PROGRAMMING WITH MIXINS IN ADA e /YO

' Ed Seidewitz
Goddard Space Flight Center
ode 552.2

Greenbelt MD 20771
(301)286-7631
eseidewitz@gsfcmail.nasa.gov

NOS-1Y371

My guess is that object-oriented programming will be in the
1980s what structured programming was in the 1970s.
Everyone will be in favor of it. Every manufacturer will
promote his products as supporting it. Every manager will
pay lip service to it. Every programmer will practice it. And
no one will know just what it is.

INTRODUCTION

[Rentsch 82])

Recently, I wrote a paper discussing the lack of "true” object-oriented ming language features in
Ada 83, why one might desire them in Ada and how they might be added in Ada 9X [Seidewitz91]). The approach I
took in this paper was to build the new object-oriented features of Ada 9X as much as possible on the basic
constructs and philosophy of Ada 83. The object-oriented features proposed for Ada 9X [Ada9X 91b), while different
in detail, are based on the same kind of approach.

Further consideration of this approach led me on a long reflection on the nature of object-oriented programming
and its application to Ada. The results of this reflection, presented in this paper, show how a fairly natural object-
oriented style can indeed be developed even in Ada 83. The exercise of developing this style is useful for at least
three reasons:

1. It provides a useful style for programming object-oriented applications in Ada 83 until new features become
available with Ada 9X;

2. It demystifies many of the mechanisms that seem to be "magic” in most object-oriented programming languages
by making them explicit; and

3. It points out areas that are and are not in need of change in Ada 83 to make object-oriented programming more
natural in Ada 9X.

In the next four sections I will address in turn the issues of object-oriented classes, mixins, self-reference and
supertyping. The presentation is through a sequence of examples, similar to those in [Seidewitz91]. This results in
some overlap with that paper, but all the examples in the present paper are written entirely in Ada 83. I will return
to considerations for Ada 9X in the last section of the paper.

CLASSES

An object represents a component of...[a] software system. ..
An object consists of some private memory and a set of
operations.. A crucial property of an object is that its privaie
memory can be manipulated only by its operations.. A class
describes the implementation of a set of objects that all

represent the same kind of system component.
[Goldberg and Robson 83]

In Ada, an object is a variable or a constant that contains a value. The declared type of the object determines
the set of possible values for the object and the set of operations that may be applied to the object. If this type is a
private type, then the value of the object may only be changed through application of an operation. This
corresponds to the object-oriented notion of a class.

Consider, for example, a simple finarial account class implemented as a private type:

with Finance Types; use Finance_Types;
package Finance is

type ACCOUNT is limited private;

procedure Open (The_Account : in out ACCOUNT;
with_Balance : in MONEY) ;
6-3
10005788L P TR TR
RECEDING PAGE - ~NK HOT FiLMED

procedure Deposit (Into_Account : in out ACCOUNT;

The_Amount : in MONEY) ;
procedure Withdraw (From_Account : in out ACCOUNT;

The_Amount : in MONEY) ;
function Balance_Of (The_Account : ACCOUNT) return MONEY;

private

type ACCOUNT is

record
Balance : MONEY := 0.00;

end record;

end Finance;

The type Finance.ACCOUNT represents a class of account objects. The subprograms defined in package
Finance are the allowable operations on objects of this class. The body of this package is straightforward. Note
that for simplicity I will assume that a number of simple types (such as MONEY) are defined in a Finance_Types

package.

The class defined by package Finance provides a simple but very general abstraction. In an object-oriented
approach, such general classes are used as the basis for implementing more specialized classes. For example, a
savings account 1s a specific kind of account that holds savings that earn interest. Other than some new operations
associated with eaming interest, a savings account is the same as the original general financial account. Thus we
should be able to implement a savings account in terms of a general account:

with Finance_Types; use Finance_Types;
package Savings is

type ACCOUNT is limited private;

procedure Open {The_Account : in out ACCOUNT;
With_Balance : in MONEY) ;
procedure Set_ Rate (0f_Account : in out ACCOUNT:
To_Rate : in RATE) ;
procedure Deposit (Into_Account : in out ACCOUNT:
The_Amount : in MONEY) ;
procedure Withdraw {From_Account : in out ACCOUNT;
The_Amount : in MONEY) ;
procedure Earn_Interest (On_Account : in out ACCOUNT:
Over_Time : in INTERVAL) ;
function Balance_ Of (The_Account : ACCOUNT) return MONEY;
function Interest_On (The_Account : ACCOUNT) return MONEY;
private
type ACCOUNT is
record
Parent : Finance.ACCOUNT:
Rate : RATE := 0.06;
Interest : MONEY := 0.00;

end record;

end Savings;

While this may not seem to gain us a lot in this simple example, such incremental extension of abstractions is
fundamental to object-oriented techniques. The class of financial accounts is said 10 be the superciass of the class of
savings accounts. Each savings account (of type Savings . ACCOUNT) has a unique parent financial account (of
type Finance . ACCOUNT).

Now, three of the seven savings account operations (Open, Deposit and Withdraw) are syntactically and
semantically the same as the corresponding financial account operations. Thus, we would like to inherit these
financial account operations. Ada 83 has no direct way of doing this. Nevertheless, we can achieve the effect of
inheritance for our present purposes by using call-through subprograms. For example, the Savings.Deposit

6-4
10005788L

operation can easily be implemented as follows:

procedure Deposit (Into_Account : in out ACCOUNT;
The_Amount : in MONEY) is

begin
Finance.Deposit (Into_Account.Parent, The_Amount)
end Deposit;

The expense of such call-throughs may be minimized through the use of pragma Inline.

Three other savings account operations (Set_Rate, Earn Interest and Interest_On) provide the
incremental new functionality of the savings account subclass. These operations are implemented in terms of the
additional components of the representation of type Savings . ACCOUNT. For example:

procedure Earn_Interest (On_Account : in out ACCOUNT;
Over_Time : in INTERVAL) is

Balance : constant MONEY := Balance_Of (On_Account);
begin
if Balance > 0.00 then

On_Account.Interest := On_Account.Interest
+ Balance*On_Account .Rate*Over_Time;

end if;
end Earn_Interest;
Note that the Balance_Of operation used here is the subclass operation Savings .Balance_Of.

The remaining savings account operation, Balance_Of, is syntactically the same as the financial account
operation, but it is semantically different. The balance of a savings account includes interest earned up to the

present point in time:

function Balance Of (The_Account : ACCOUNT) return MONEY is
begin

return Finance.Balance Of (The_Account.Parent)
+ The_Account.Interest;

end Balance_Of;

Note that while Balance_Of is not a call-through operation, the superclass operation Finance .Balance_ Of is
used in its implementation.

The usefulness of a superclass like the financial account class comes from the fact that it can provide a common
tQasis fglr a number of subclasses. For example, a class of checking accounts may provide anotfier subclass of
nancial accounts:

with Finance:;
with Finance Types; use Finance_Types;
package Checking is

type ACCOUNT is limited private;

procedure Open (The_Account in out ACCOUNT:;
With Balance : in MONEY) ;
procedure Set Fee (0f_Account in out ACCOUNT;
To_Fee in MONEY) ;
procedure Deposit (Into_Account : in out ACCOUNT:
The_Amount in MONEY) ;
procedure Withdraw (From_Account : in out ACCOUNT;
The_Amount in MONEY) ;

function Balance_Of (The Account : ACCOUNT) return MONEY;

private

6-5
10005788L

type ACCOUNT is

recoxrd
Parent : Finance.ACCOUNT;
Overdraft_Fee : MONEY := 10.00;

end record;

end Checking;

In this simple example, the only difference between checking accounts and financial accounts is that
overdrawing a checking account is not permitted. Further, each overdraft attempt (i.¢, a returned check) is penalized
by deducting a fee from the account. Thus, the implementation of Withdraw must be changed for checking
accounts:

procedure Withdraw (From_Account : in out ACCOUNT;
The_Amount : in MONEY) is

begin

if The Amount <= Balance_Of (From_ Account) then
Finance.Withdraw (From_Account.Parent, The_Amount):;
else
Finance.Withdraw (From Account.Parent,
From Account.Overdraft_Fee);

end if;

end Withdraw;

The savings account and checking account subclasses of the financial account class may themselves act as
superclasses for even more specialized classes. Thus, a general class may be the root of a quite extended class
hierarchy. Each subclass in the hierarchy incrementally extends the capabilities of its superclass, while inheriting
common functionality.

MIXINS

A mixin is...a subclass definition that may be applied to
d?'ﬁerent superclasses to create a related family of modified
c

asses.
[Bracha and Cook 90]

A superclass may be used as the base for many subclasses. However, as described so far, a subclass is tied to
one superclass. For instance, savings accounts are based specifically on the class defined by package Finance.
There may be other types of accounts to which we want to added interest-bearing functionality such as that defined
for savings accounts. For example, an interest-bearing checking account is basically a checking account with
interest-bearing functionality added to it (or, alternatively, a savings account with checking functionality added).

Rather than recoding essentially the same interest-bearing functionality each time it is needed, we can capture
this functionality in a generic package that takes a specific superclass as a parameter:

with Finance_Types; use Finance_Types;
generic

type SUPERCLASS is limited private;
with function Balance Of (The_Account : SUPERCLASS) return MONEY is <>;
package Interest is

type MIXIN is limited private;
type ACCOUNT is

record
Parent : SUPERCLASS;
Extension : MIXIN;
end record;
procedure Set_Rate (Of_Account : in out ACCOUNT;
To_Rate : in RATE) ;

procedure Earn_Interest (On_Account : in out ACCOUNT;
Over_Time : in INTERVAL) ;

function Balance_ Of (The_Account : ACCOUNT) return MONEY;
6-6
10005788L

function Interest_On (The Account : ACCOUNT) return MONEY;

private
type MIXIN is
record
Rate : RATE := 0.06;
Interest : MONEY := 0.00;

end record;

end Interest;

A genéric package such as this is called a mixin because it provides an increment of functionality which may be
"mixed-into” any superclass that has the operations required to fill in the generic parameters. Typically, mixins are
used within a framework of multiple inheritance. For example, we can reconstruct the savings account class by
inheriting from both the financial account class and an appropriate instantiation of the interest mixin:

with Finance, Interest;
with Finance_Types; use Finance_Types;
package Savings is

type ACCOUNT is limited private;

procedure Open (The_Account : in out ACCOUNT;
With_Balance : in MONEY) ;

function Interest_On (The Account : ACCOUNT) return MONEY;

private

package Savings_Interest is
new Interest (Finance.ACCOUNT, Finance.Balance Of):

type ACCOUNT is new Savings_Interest.ACCOUNT;

end Savings;

The Parent component of the ACCOUNT type defined in mixin Interest is used to inherit from the parent
superclass Finance via a call-through. For example:

procedure Open (The Account : in out ACCOUNT;

Wwith Balance : in MONEY) is
begin
Finance.Open (The_Account.Parent, With_Balance);
end Open;

The record type Savings_Interest .ACCOUNT is defined as a visible, rather than a private, type in the mixin to
allow access o the Parent component. Note that it would not be possible to replace this use of a visible record
component with a function that retaumns the parent object, because we need to use the parent as an in out
parameter. The type MIXIN is never used itself outside of the mixin package.

Call-through subprograms are also needed to inherit from the mixin instantiation Savings_Interest. This
is because the equivalent derived subprograms obtained from the derived type definition of Savings.ACCOUNT
are hidden by the operations declared in the package specification, and in Ada 83 there must be a full subprogram
body for each of these declarations. For example:

function Interest_On (The_Account : ACCOUNT) return MONEY is
begin
return Savings_Interest.Interest_On
(Savings_Interest .ACCOUNT (The_Account));
end Interest_On;

Having introduced the concept of mixins, we can, of course, also create a mixin that embodies the overdraft
functionality of the checking account class:

6-7
10005788L

with Finance_Types; use Finance_Types;
generic

type SUPERCLASS is limited private:;

with procedure Withdraw (From_Account : in out SUPERCLASS;
The_Amount : in MONEY) is <>;

with function Balance_Of (The_Account : SUPERCLASS) return MONEY is <>;
package Draft is

type MIXIN is limited private;
type ACCOUNT is

record
Parent : SUPERCLASS:;
Extension : MIXIN;
end record;
procedure Set_Fee (Of Account : in out ACCOUNT;

To_Fee : in MONEY) ;

procedure Withdraw (From Account : in out ACCOUNT;
The_Amount : in MONEY) ;

private
type MIXIN is
record
Overdraft_Fee : MONEY := 10.00;
end record;
end Draft;
Even our original financial account class can be converted to a mixin:

with Finance_Types; use Finance_Types;
generic

type SUPERCLASS is limited private;
package Monetary is

type MIXIN is limited private;
type ACCOUNT is

record
Parent : SUPERCLASS;
Extension : MIXIN;
end record;
~ procedure Open (The_Account : in out ACCOUNT;
With Balance : in MONEY) ;
function Balance_Of (The_Account : ACCOUNT) return MONEY:
private
type MIXIN is
record
Balance : MONEY := 0.00;

end record;
end Monetary;

Of course, this mixin does not require any superclass functionality to implement its operations. However, use of the
mixin construct allows monetary account functionality to be mixed into any class.

The use of mixins causes traditional class hierarchies to collapse into pieces. Each piece is a mixin that
provides a well-defined increment of functionality. We can then form specific classes from these pieces by
instantiating a number of mixins and inheriting all necessary functionality from them. To provide a definite starting

6-8

10005788L

point for this process, we can define a root class that basically does nothing more than provide an empty record to
which we can add mixins:

package Root is
type CLASS is limited private;
private

type CLASS is
record

null; -

end record;

end Root;
While this root class seems a bit pointless, the concept will prove useful in the next section.

At last we are ready to construct an interest-bearing checking account class without rewriting any savings
account or checking account functionality. To do this, we simply mix together interest, draft and monetary account
functionality. All Interest Bearing Checking.ACCOUNT operations are implemented as call-throughs to
various mixin operations. Thus, from the three mixins Monetary, Interest and Draft, we can easily
construct an interest-bearing checking account class, as well as reconstructing our original financial, savings and
checking account classes.

Of course, in the actual Interest Bearing_Checking package, the three mixin generics must be
instantiated in a specific sequential order. In the present case, we must first establish the basic monetary account
functionality, then mix in interest and draft functionality. This results in the following implementation:

with Root, Monetary, Interest, Draft;

with Finance_Types; use Finance_Types;

package Interest_Bearing_Checking is
type ACCOUNT is limited private;

procedure Open (The_Account : in out ACCOUNT;
With_Balance in MONEY) ;

function Interest On (The_Account : ACCOUNT) return MONEY;

private

package Checking_Finance is -- Basic financial account
new Monetary (Root.Class):

package Checking_Interest is -- Mix in interest functionality
new Interest (Checking Finance.ACCOUNT, Checking_Finance.Balance_ Of);

procedure Withdraw (From Account : in out Checking Interest.ACCOUNT;

The_Amount : in MONEY) ;

-- call-through to Finance.Withdraw

package Checking Draft is -- Mix in overdraft fee functionality
new Draft (Checking_Interest.ACCOUNT,

Withdraw,

Checking_Interest.Balance_Of);

type ACCOUNT is new Checking Draft.ACCOUNT;
-- Private type representation

end Interest_Bearing_ Checking;

Note that all the mixins are instantiated in the private part of the specification. Each instantiation uses the type and
subprograms from the previous instantiation as arguments. The intermediate procedure Withdraw for type
Checking Interest.ACCOUNT is necessary because the instantiated mixin Checking_Interest only
provides the interest-related operations on Checking_Interest . ACCOUNT. It is implemented as simply a call-
through to Finance .Withdraw.

6-9

10005788L

SELF-REFERENCE

When an object of a given class is created its state components
include those of the class and all its superclasses and it can
perform operations of the class and its superclasses on the
component state. References to "self’ in operations of a
superclass refer to the composite object on behalf of which the
operation is to be performed.

[Wegner 87}

In the interest-bearing checking account package at the end of the last section, the Interest mixin was

instantiated before the Draft mixin. It would seem that we could equally well have instantiated them in the
opposite order:

with Root, Monetary, Interest, Draft;
with Finance_Types; use Finance_Types;
package Interest_Bearing Checking is

type ACCOUNT is limited private;

procedure Open {(The_Account : in out ACCOUNT;
With_Balance : in MONEY) ;

™

function Interest_On (The_Account : ACCOUNT) return MONEY;

private

package Checking Finance is -- Basic financial account
new Monetary (Root.Class):;

package Checking Draft is -- Mix in overdraft fee functionality
new Draft (Checking Finance.ACCOUNT, Checking Finance.Withdraw,
Checking_Finance.Balance_Of);

function Balance_Of (The_Account : in Checking Draft.ACCOUNT)
return MONEY;
-- call-through to Finance.Balance_Of

package Checking_ Interest is -- Mix in interest functionality
new Interest (Checking Draft.ACCOUNT, Balance_Of):;

type ACCOUNT is new Checking_Interest .ACCOUNT;
-- Private type representation

end Interest_Bearing_Checking:;

Unfortunately, it tumns out that this introduces a subtle error, as follows:

" In the new implementation, the Draft mixin is instantiated before the Interest mixin, using the
Checking_Finance.Balance_Of operation.

The implementation of the Wit hdraw operation in the Draft mixin uses the Balance Of operation given
as a generic formal superclass operation to determine if there is an overdraft. In this case, the actual
subprogram used is Checking_Finance.Balance_Of, which does not add in any earned interest.

The Interest_Bearing Checking.Withdraw operation is inherited from the instantiation
Checking Draft of the Draft mixin, so as to include the overdraft functionality. This means that
accumulated interest is ignored when checking for an overdraft. This is clearly unfair to the customer!

The problem is that we do not really want to use the superclass Balance_Of operation in the Draft mixin

instantiation. Rather, we need to use the Balance_Of operation from the composite subclass being constructed.
However, we cannot use the subclass type Interest Bearing Checking.ACCOUNT in the instantiation of
the Draft mixin, because that type cannot be fully defined yet. Thus, we must instead be sure to instantiate the
Interest mixin first, so that the interest-bearing functionality is mixed into the Balance_Of operation before
Draft is instantiated.

Such order dependencies are at best annoying sources of potential errors. At worst, they can introduce circular

dependencies that make it impossible to mix together certain mixins. To avoid this, we need a mechanism that
allows mixins to call subclass operations in addition to superclass operations. Following the parameterization
approach that led us to mixins in the first place, we can include a second generic formal type parameter in mixins to

6-10
10005788L

represent the subclass.

For example, we want the Draft mixin to use the subclass Balance_Of operation:

with Finance_Types; use Finance_Types;
generic

type SUPERCLASS is limited private;

with procedure Withdraw (From Account : in out SUPERCLASS;
The_Amount : in MONEY) is <>;

type SUBCLASS is limited private;
with function Balance Of (The Account : SUBCLASS) return MONEY is <>;
with function Self (Parent : SUPERCLASS) return SUBCLASS is <>;

package Draft is

type MIXIN is limited private;
type ACCOUNT is

record
Parent : SUPERCLASS;
Extension : MIXIN;

end racord;

procedure Set_Fee (Of_Account in out ACCOUNT;

To_Fee in MONEY) ;
procedure Withdraw (From Account : in out ACCOUNT;
) The_Amount : in MONEY) ;
function Self (This_Account : ACCOUNT) return SUBCLASS;

private

type MIXIN is
record .
Overdraft_Fee : MONEY := 10.00;
end record;

end Draft;
The Wit hdraw operation for this mixin is then implemented as follows:

procedure Withdraw (From_ Account : in out ACCOUNT;
The Amount : in MONEY) is

begin

if The Amount <= Balance_Of (Self (From Amount)) then
Finance.Withdraw (From_ Account.Parent, The_Amount);

else
Finance.Withdraw (From_Account.Parent,
From_Account.Extension.Overdraft_Fee);

end if;
end Withdraw;

Note the use of the function Se1f to convert an object of type Draft . ACCOUNT to the appropriate object of type
SUBCLASS. These odd little Self functions are the key to this approach. They allow us to use the subclass

operations as required.

The question is, of course, how can we implement such a2 Self function? Strangely enough, we can implement
it in terms of the superclass Self function given as a generic formal parameter:

function Self (This Account : ACCOUNT) return SUBCLASS is
begin

return Self (This_Account.Parent);
end Self;

6-11
10005788L

Obviously, this passing of the buck must end someplace. It ends with the root class, which we reimplement as
follows:

generic

type SUBCLASS is limited private;
package Root is

type CLASS is limited private;

procedure Initialize (The_Object : in outCLASS;
To_Self : dn SUBCLASS) ;

function Self (This_Object : CLASS) return SUBCLASS:

private

type CLASS is
record
Self : SUBCLASS;
end record;

end Root;
Thus the mystery is resolved: the Se1£ functions all ultimately access a Self component defined in the root class.

Now, the astute reader may have noticed that we have introduced a strange sort of circularity here. The
representation of any class built on the root class will include a component of the subclass type. However, when we
ﬁnisheonstrmﬁngaclasﬁ'omtheromelassandmixim.themsuhisﬁwverysubclasswim which we need to
instantiate the root class to begin with! To achieve this circularity, we must require that the subclass type be an
access type. The Self component is then intended to be a pointer back to the complete, composite subclass object.
(Actually, access types are also needed to allow the Self tions to work properly with subclass procedures that
would otherwise have in out parameters.)

With inclusion of subclass parameters in mixins, we can now correctly implement the interest-bearing checking
account class using either order of mixin instantiation:

with Finance_Types; use Finance_Types;
package Interest_Bearing Checking is

type ACCOUNT is limited private;

procedure Open (The_Account : in out ACCOUNT;
With_Balance : in MONEY) ;
procedura Close (The_Account : in out ACCOUNT);
procedure Set Rate (Of_Account : in ACCOUNT;
To_Rate : in RATE) ;
private

type ACCOUNT_RECORD;
type ACCOUNT is access ACCOUNT_RECORD;

end Interest_Bearing_Checking;

An advantage of implementing a private type as an access type is that the details of the type representation can be
deferred 1o the package body by using an incomplete type definition for ACCOUNT_RECORD in the private part of
the specification. The use of an access type also allows the use of in rather than in out parameters in procedures
such as Set_Rate, which is necessary for the use of Sel£ functions.

Circular definition is also achieved using the incomplete type definition for ACCOUNT_RECORD. The
circle is cl y completing the definition of ACCOUNT_RECORD after all the mixin instantiations in the package

body. The figure on the next page shows the structure of an Interest_Bearing_Checking.ACCOUNT object
resulting from the following implementation:

6-12
10005788L

An_Account: Interest_Bearing_Checking ACCOUNT 'w

Interest__Bearing_CheckingL.ACCOUNT_RECORD

CheckirlLDraﬂ.ACCOUNT
Checkiqg:Finance.ACCOUNT
Checking Root.CLA
Self o —
Balance :0.00
Overdraft_Fee :10.00
Rate :0.06
Interest :0.00

with Root, Monetary, Interest, Draft;
package body Interest_Bearing_Checking is

package Checking_Root is
new Root (SUBCLASS => Interest_Bearing_Checking.ACCOUNT) ;

use Checking Root;
package Checking Finance is
new Monetary
(SUPERCLASS => Checking_Root .CLASS,
SUBCLASS => Interest Bearing_ Checking.ACCOUNT) ;

use Checking_Finance;
package Checking Draft is
new Draft
(SUPERCLASS => Checking_Finance.ACCOUNT,
SUBCLASS => Interest_Bearing_ Checking.ACCOUNT) ;

function Balance Of (The_Account : in Checking_Draft.ACCOUNT)
return MONEY;
-- call-through to Finance.Balance_Of

use Checking Draft;
package Checking_Interest is
new Interest
(SUPERCLASS => Checking Draft .ACCOUNT,
SUBCLASS => Interest_Bearing_ Checking.ACCOUNT) ;

type ACCOUNT_RECORD is new Checking_Interest.ACCOUNT;

end Interest_Bearing_Checking;

(Note that to simplify the instantiations, I have taken advantage of the box defaults on the generic formal
subprogram parameters of the mixins.)

A disadvantage of using an access type is that interest-bearing checking accounts must be explicitly allocated.
We can do this as part of the Open operation:

6-13
10005788L

procedure Open (The_Account : in out ACCOUNT;
With Balance : in MONEY) is

begin

if The_Account /= null then
Close (The_Account);
end if;

The_Account := new ACCOUNT_RECORD;
Checking_Root.Initialize
(The_Object => The_Account.Parent.Parent.Parent,
To_Self => The Account);
Checking_Finance.Open (The_Account.Parent.Parent, With_Balance);

end Open;

Note the use of the root Initialize operation to set the Self component. The figure on the previous page
shows the structure of nested records and self reference that results from the allocation and initialization of an

Interest_Bearing Checking.ACCOUNT object
We also need to provide a way to deallocate interest-bearing checking accounts:

procedure Free is new Unchecked_Deallocation (ACCOUNT_RECORD, ACCOUNT);
procedure Close (The_Account : in out ACCOUNT) is
begin

Free (The_Account);
end Close;
All the rest of the interest-bearing checking account operations are inherited from one or the other of the mixin
instantiations.

SUPERTYPES

Subtyping is a substitutability relationship, i.e., an instance of
a subtype can stand in for an instance of its supertype. How
the subtype is implemented is totally irrelevant; all that
matters is that it have the right behavior so that it can be

substituted.
[Lalonde and Pugh 91]

Typically, the customer of a bank will have several accounts at that bank. Each bank account may be, say, a
savings account, a checking account or an interest-bearing checking account. To manage all the bank accounts of
one customer, we would like to create a bank account type that is the supertype of the types that represent the
various classes of accounts. We could then create lists of bank accounts, define bank account operations, etc.

As discussed in the previous sections, each class is implemented in Ada by a private type that is distinct from all
other class types. Nevertheless, we can still explicitly create a bank account supertype:

with Savings, Checking, Interest_Bearing Checking;
with Finance_ Types: use Finance_Types;
package Bank is
type ACCOUNT_TYPE is (SAVINGS, CHECKING, INTEREST_ CHECKING) ;

type ACCOUNT (Kind : ACCOUNT_TYPE := SAVINGS) is

record
case Kind is
when SAVINGS => A Savings_Account : Savings.ACCOUNT;
when CHECKING => A Checking Account : Checking.ACCOUNT;

when INTEREST CHECKING => An_Interest_Checking_Account
: Interest_Bearing_ Checking.ACCOUNT;

end case;
end record;
procedure Open (The_Account : in out ACCOUNT;
With Balance : in MONEY) ;
procedure Close (The_Account : in out ACCOUNT);
6-14

10005788L

in out ACCOUNT:

procedure Deposit {Into_Account :
The_Amount : in MONEY) ;
procedure Withdraw (From Account : in out ACCOUNT;
The_Amount : in MONEY) ;

function Balance Of (The_Account : ACCOUNT) return MONEY;

end Bank:;

’

The type Bank.ACCOUNT defines a supertype with subtypes Bank .ACCOUNT (SAVINGS),
Bank . ACCOUNT (CHECKING) and Bank .ACCOUNT (INTEREST_ CHECKING). Each subtype corresponds to
one of the classes defined in previous sections. Note that a private type is unnecessary here, because we wish to be
able to freely convert between the Bank . ACCOUNT subtypes and the class types.

The five operations defined in package Bank reflect the operations that are common to all the account types.
Semantically, we wish each supertype operation to mirror the implementation of the appropriate subtype operation.
For example, the statement:

Bank.Withdraw (From_Account => A, The_Amount => X);
should be equivalent to either Savings.Withdraw, Checking.Withdraw or

Interest_Bearing_ Checking.Withdraw, depending on the subtype of A. Since the subtype of A can, in
general, only be determined at run-time, we are effectively asking that Bank . Withdraw be dynamically bound to

the appropriate subtype operation.

We can achieve the effect of dynamic binding in Ada by implementing the bank account operations as
dispatching or case-selection subprograms. For example:

procedure Withdraw (From Account : in out ACCOUNT;
The Amount : in MONEY) is

begin
case Kind is
when SAVINGS =>
Savings.Withdraw (From_ Account.A Finance_Account, The_Amount);

when CHECKING =>
Checking.Withdraw (From Account.A_Checking Account, The_Amount);

when INTEREST_CHECKING =>
Interest Bearing Checking.Withdraw
(From_Account .An_Interest_Checking_Account, The_Amount);
end case;
end Withdraw;

Once we have the bank account supertype, we can create polymorphic data structures and operations that can
handle all kinds of bank accounts. For example:

type CUSTOMER_ACCOUNTS is array(POSITIVE range <>) of Bank.ACCOUNT;
function Total Assets_Of (The Accounts : CUSTOMER_ACCOUNTS) return MONEY is

Total : MONEY := 0.00;
begin

for I in The_Accounts'range loop

Total := Total + Bank.Balance_Of (The Accounts(I));
end loop:;
raturn Total;

end Total_ Assets_Of;

The function defined above finds the total assets a customer has in his accounts, regardless of what kinds of
accounts they are.

6-15
10005788L

It is important to note that to be included in a supertype, a class need only provide implementations for all the
operations defined for the supertype. The ways in which various subtype classes implement these operations do not
have to be related at all. For example, the Bank . ACCOUNT supertype is constructed from a number of classes
implemented by various combinations of the mixins Monetary, Interest and Draft. These classes thus share
some common implementation, but this is not at all important to the construction of the supertype.

Thus, supertypes and superclasses are really distinct concepts. Looking at it another way, the supertype
provides a set of dispatching operations for those operations which are common to all its subtypes, regardless of how
those operations may be implemented by the subtype classes or how the subtypes may be represented. A supertype
that is constructed in this way from a given list of subtype classes is said to be the union type of those classes. Thus
we have constructed a bank account supertype that is the union of the savings, checking and interest-bearing
checking account classes.

It was noted earlier that the use of mixins causes a collapse of the original class hierarchy. Using union types,
however, we can still form a type hierarchy by appropriately grouping classes. As well as the Bank . ACCOUNT
union type, such a rype hierarchy for account classes could include the union of the savings and interest-bearing
checking account classes (an investment supertype treating interest-bearing checking accounts as savings accounts)
and the union of the checking and interest-bearing checking account classes (a cash account supertype treating
interest-bearing checking accounts as checking accounts). Note how it is possible for a class to be included in more

than one union type.

CONSIDERATIONS FOR ADA 9X

There is a recognized need for improving Ada’s support for
data abstraction, and the construction of programs from pre-
existing components.

[Ada9X 91a]

The mixin-based style described in this paper combines the benefits of object-oriented mixins with the
advantages of explicit parameterization through generics. With superclass and subclass parameterization, mixins are
completely independent software components that can be mixed and matched in many combinations. This leads to a
powerful paradigm known as parameterized programming that promotes highly reusable code (see, for example,
[Goguen 84; Seidewitz and Stark 91]),

Unfortunately, as the reader can see from the examples in this paper, this style is awkward in places with
Ada 83. In particular, the following areas especially need to be addressed in Ada 9X:

1. There needs to be a way to create a subclass type by simplé extension of a class type and to parameterize this
extension with a mixin. The proposed Ada 9X record extension mechanism [Ada9X 91b) fills this need admirably
well.

2. There needs to be a simpler way to achieve self-reference during the combination of mixins. This need seems
to be filled by the proposed mechanism in Ada 9X to allow type extensions as generic formal type parameters
[Ada9X 91b). This would probably necessitate the use of nested generics to allow the mixin type to be an
extension of the SUPERCLASS type parameter and the SUBCLASS type parameter to be an extension of the
mixin type. Such a construction would, however, eliminate the need for Self functions.

3. There needs to be a mechanism for constructing supertypes without having to explicitly code dispatch
operations. Ada 9X does provide an automatic dispatching capability using "tagged records” [Ada9X 91b).
However, this capability can only be used if the subtypes are implemented as subclasses (type extensions) of the
supertype. This perpetuates the confusion of superclass and supertype.

Thus the proposed object-oriented features for Ada 9X largely support the mixin style described in this paper.
Unfortunately, the tagged record mechanism confuses type extension and dispatching. This is analogous to the
equation of superclasses and supertypes in most typed object-oriented programming languages (such as C++
[Stroustrup 86]).

Requiring supertypes to be superclasses is inconvenient when we are using generic mixins to construct classes,
and wish 1o create a type hierarchy after the fact. Perhaps a better model for Ada 9X would be the "abstract type”
mechanism of the languages Emerald [Black e1 aL 87) and POOL-I [America and van der Linden 90). Even with the currently
proposed Ada 9X features, however, a generics-based approach to mixins, such as that presented in this paper, could
be an important contribution of Ada 9X back to the object-oriented programming community.

ACKNOWLEDGEMENT

1 would like to thank my colleague Mike Stark for a number of good suggestions that greatly improved the
clarity of presentation of this paper.
6-16

10005788L

REFERENCES

Adad9X 91a
Ada9X 91b

America and van der Linden 90

Black et al. 87

Bracha and Cook 90

Goguen 84
Goldberg and Robson 83
Lalonde and Pugh 91

Rentsch 82

Seidewitz 91

Seidewitz and Stark 91

Stroustrup 86

Wegner 87

10005788L

DRAFT Mapping Rationale Document, Ada 9X Project Report, February
1991

Ada 9X Mapping Document, Draft Ada 9X Project Report (2 volumes),
August 1991

Pierre America and Frank van der Linden, "A Parallel Object-Oriented
Language with Inheritance and Subtyping”, Proceedings of the Conference
on Object-Oriented Programming System, Languages, and Applications /
European Conference on Object-Oriented Programming, SIGPLAN
Notices, October 1990

Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy and Larry Carter,
"Distribution and Abstract Types in Emerald”, IEEE Transactions on

Software Engineering, January 1987

Gilad Bracha and William Cook, "Mixin-Based Inheritance”, Proceedings
of the Conference on Object-Oriented Programming System, Languages,
and Applications | European Conference on Object-Oriented Programming,
SIGPLAN Notices, October 1990

Joseph A. Goguen, "Parameterized Programming”, I[EEE Transactions on
Software Engineering, September 1984

Adele Goldberg and David Robson, Smalltalk-80: The Language and its
Implementation, Addison-Wesley, 1983

Wilf LaLonde and John Pugh, "Subclassing # Subtyping # Is—a", Journal of
Object-Oriented Programming, January 1991

"Object-Oriented Programming”, SIGPLAN Notices, September 1982

Ed Seidewitz, "Object-Oriented Programming through Type Extension in
Ada 9X", Ada Letters, March/April 1991

Ed Seidewitz and Mike Stark, "An Object-Oriented Approach to
Parameterized Software in Ada", Proceedings of the Eighth Washington
Ada Symposium, June 1991

Bg%rgne Stroustrup, The C++ Programming Language, Addison-Wesley,
1

Peter Wegner, "The Object-Oriented Classification Paradigm”, in Research

Directions in Object-Oriented Programming, ed. by Bruce Shriver and
Peter Wegner, The MIT Press, 1987 .

6-17

